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Abstract. The nature of the resonance interaction between two isotropic atoms in an excited configuration
is reinvestigated. The currently accepted oscillatory form for the long-range retarded resonance interaction
is shown to be a subtle artefact that arises due to too drastic approximations. Formulation of the resonance
interaction energy problem in terms of the interacting system leads to a form that it is ∝ r−4 in the retarded
limit. We also demonstrate that the resonance interaction energy at any finite temperature goes over to
purely classical long-range asymptote. This manifestation of the correspondence principle is due to thermal
excitation of the electromagnetic field. We finally discuss why the textbook result for the Förster energy
transfer between two atoms is incorrect for the same reasons.

PACS. 34.20.Cf Interatomic potentials and forces – 34.30.+h Intramolecular energy transfer;
intramolecular dynamics; dynamics of van der Waals molecules

1 Introduction

A detailed knowledge of the nature of interaction ener-
gies and transition rates for diatomic systems in excited
configurations is important to understand cold collision
processes, laser cooling of atomic samples, and coherent
control of cold molecule formation. It is also relevant to
possible future developments like mooted molecular quan-
tum computation. Efficient formation of long-lived cold
molecules via photoassociation has been achieved exper-
imentally [1]. The theoretical explanation involves the
resonance interaction between excited and ground state
atoms [2]. Atomic radiative life times are sensitive tests of
atomic-structure calculations, and experiments have been
performed on molecules created from two atoms, one in its
ground state and one in an excited electronic state [3–5].
Binding energies and life times were determined using pho-
toassociation spectroscopy of laser-cooled atoms and the
results compared to the theoretical results of McLone and
Power [6]. However, as we will show here the standard os-
cillating long-range retarded interaction is erroneous. We
derive the correct form of the interaction.

In a series of publications Mitchell, Ninham, Richmond
and Mahanty [7–9] developed a semi-classical method for
the van der Waals energy of interaction between two atoms
in their ground states. The atoms were represented as
polarizable dipoles. In the appropriate limits both the
London [10] (∝ r−6) and Casimir-Polder [11] (∝ r−7) po-
tentials were obtained. In the present work we will use
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this formalism to study the interaction between two iden-
tical atoms (or two identical molecules) when one is in
its ground state and the other in an excited state. The
semiclassical technique that we use is precisely equiva-
lent to the full QED interaction problem as given by
Dzyaloshinskii, Lifshitz and Pitaevskii for ground state
interactions [9,12,13]. It can also be used to derive an
estimate of the Lamb shift [9]. The quantum mechanical
perturbation treatment of the problem is well-known [14].
Here, in the non-retarded case the interaction is ∝ r−3,
where r is the distance between the atoms. In the re-
tarded limit McLone and Power [6] found that it was
∝ (ω0r/c)−1 cos(ω0r/c) where ω0 is the oscillator absorp-
tion frequency and c is the velocity of light. Potentials
of this form have been used to study exciton transfer in
molecular crystals [15]. This leads to a shape dependence
of the physical properties of these crystals in so far as
conditionally convergent series arise from use of the long-
range potential. The retarded resonance interaction prob-
lem then presents something of a puzzle, particularly since
the basic theory from which it is derived has appeared to
be correct. The puzzle is here resolved. The self-consistent
method that we use yields the usual non-retarded reso-
nance interaction potential ∝ r−3. But the retarded res-
onance potential between identical isotropic atoms in an
excited configuration turns out to be ∝ r−4, which is phys-
ically very sensible.

The paper is organized as follows. We derive in Sec-
tion 2 the correct resonance interaction energy between
two atoms in an excited configuration. The currently



48 The European Physical Journal D

accepted oscillating form for the retarded interaction is
demonstrated to be a subtle artefact of approximations
that do not take the coupling via the field properly into
account. We discuss in Section 3 how the interaction
changes at any finite temperature. As we will discuss in
Section 4 the resonance interaction is closely related to the
Förster energy transfer. The Förster energy transfer [16]
underpins many problems in biology. It underlies photo-
synthesis, artificial light harvesting, and fluorescent light-
emitting devices [17–19]. Förster energy transfer was dis-
covered experimentally by Cario and Franck in 1923 [20].
They exposed a mixture of mercury and thallium to a
frequency which could only be absorbed by the mercury
atoms. The fluorescence spectrum contained frequencies
that could only be emitted by the thallium demonstrat-
ing a transfer of energy between mercury and thallium
atoms. However, while resonant energy transfer certainly
exists, we will demonstrate that the existent underlying
theory derived from perturbative quantum electrodynam-
ics (QED) is incorrect. This interaction furthermore un-
derlies the interpretation of many problems in circular
and optical dichroism and related techniques standard in
biophysical chemistry. Subtraction of an erroneous (theo-
retical) result from experiment to infer electron transfer
in macromolecules causes serious difficulties in interpreta-
tion.

2 Resonance interaction at zero temperature

We first outline the present accepted status of the problem
before coming to difficulties with this approach. We will
write down the equations of motion and obtain a charac-
teristic Green function for the system [21]. We also show
that results obtained by McLachlan [21] which pertains
to the time dependent case of energy transfer can be de-
duced from this Green function. We then use this Green
function to determine the interaction energy. The reasons
for the breakdown of the conventional quantum field the-
oretic perturbation treatment are explored and discussed
below.

Following the earlier treatment for two atoms in their
ground states [7–9] we consider two identical polarizable
dipoles and choose a coordinate system with origin at
dipole 1. The positive z-axis is directed toward dipole 2.
The oscillating moment of dipole 1, P(1, t) = P(1)e−iωt,
gives rise to an oscillating field E(t) = E(r|1)e−iωt where

E(r|1) = T(r|ω)P(1), (1)

and

T(r|ω)ij =
(

∂

∂xi

∂

∂xj
− δij∇2

)
G(r|ω). (2)

The Green function is defined as

G(r|z) =
1

(2π)3

∫
d3k

eikr

z2/c2 − k2
· (3)

This function is analytic everywhere in the complex z-
plane except on the real frequency axis where it has a

branch cut. When evaluating the free space susceptibil-
ity matrix T in equation (2) we must prescribe how to
approach this cut. The retarded form which approaches
the cut from above yields the following non-zero matrix
elements [21],

Txx = Tyy =
(

ω2

c2
+

iω
rc

− 1
r2

)
eiωr/c

r
,

Tzz = 2
(

1
r2

− iω
rc

)
eiωr/c

r
· (4)

Substituting this into equation (1) yields the usual re-
tarded field [7–9]. Now the matrix can be separated into
real and imaginary parts. Thus

T(r|ω) = T′(r|ω) + iT′′(r|ω). (5)

These give rise to in phase and out of phase components
of the electric field. In the limit |r| → 0 the real part of
G is a principal value integral which is identically zero for
real ω. This can be proved using the fact that

P

∫ ∞

0

cos(αx)
x2 − a2

=
π sin(aα)

2a
(6)

differentiating twice with respect to α and going to the
limit α → 0. Hence the real part of T(0, ω) is zero. The
imaginary part yields an out of phase contribution to T
which is the well known radiation damping.

T′′(0|ω)ij = δij
2
3

ω3

c3
≡ δij

ω

α0
γ(ω). (7)

The equation of motion for two coupled dipoles separated
by a distance r are now [21]

(ω2
0 − ω2)P(1) = α0[iT′′(0|ω)P(1) + T(r|ω)P(2)], (8)

(ω2
0 − ω2)P(2) = α0[iT′′(0|ω)P(2) + T(r|ω)P(1)], (9)

where α0 = fe2/m, f the oscillator strength, e and m
charge and mass of the oscillator, and ω0 its frequency. If
we introduce the isotropic polarizability,

α(ω)ij =
α0δij

ω2
0 − ω2 − iωγ(ω)

= α(ω)δij , (10)

Equations (8, 9) can be rearranged to give

P(1) = α(ω)T(r|ω)P(2), (11)
P(2) = α(ω)T(r|ω)P(1). (12)

These equations are identical to those derived in refer-
ences [7–9], except that the polarizability is modified by
explicit inclusion of the radiation damping term. The in-
teraction between two identical oscillators where one ini-
tially is in its ground state and the other is in an excited
state can be represented by a superposition of states: one
symmetric and one antisymmetric with respect to inter-
change of the atoms. The two atoms are coupled by the
exchange of the single excitation and one cannot say which
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atom is excited. While the symmetric state is likely to de-
cay into two ground-state atoms, the antisymmetric state
is long-lived. The system can thus be trapped in the anti-
symmetric state. The excitation migrates back and forth
between the two atoms until a photon is emitted away
from the system. First order dispersion interactions are
caused by this coupling of the system, i.e. the energy dif-
ference between the two states is separation dependent.

Now for identical dipoles the normal modes of the in-
teracting system are the symmetric (Pi(1) = Pi(2)) state
P+

i and the antisymmetric (Pi(1) = −Pi(2)) state P−
i . It

can be seen by inspection of equations (8, 9) that these
satisfy

[I∓ α(ω)T(r|ω)]P± = 0, (13)

where I is the unit matrix. For the simple case of isotropic
oscillators considered here T and α are diagonal matrices.
To calculate resonant energy transfer times and interac-
tion energies it is more convenient to use the retarded
Green function which for Im(z) > 0 satisfies

{[ω2
0 − z2 − izγ(z)]I∓ α0T(r|z)}G±(r|z) = ω2

0I. (14)

The factor ω2
0 on the right hand side is a normalization

factor. If we introduce the notation

G0(z) =
ω2

0

ω2
0 − z2

I, (15)

Σ(r|z) = α0T(r|z)/ω2
0 , (16)

then from equations (14–16) we can write the Green func-
tion in the form

G±(r|z) =
I

G0(z)−1 − [Σ(0|z)± Σ(r|z)]
· (17)

This form is familiar from many particle physics [22] as a
solution of Dyson’s equation. The frequencies and lifetimes
for energy transfer between two oscillators are determined
by the singularities of this Green function (17).

The treatment so far is unexceptionable in that there
is no conflict with alternative formulations via quantum
field theory. We now show however that the further stan-
dard development becomes flawed. A standard procedure
in quantum-field theoretic treatments of atom-field inter-
actions is to replace the strength of the atom-field cou-
pling for a given mode g(ω) with the value for a resonant
mode g(ω0). For most situations this seems reasonable as
g(ω) varies slowly with ω and the optical resonances are
sharp. However, we demonstrate below that it is due to
this approximation that previous treatments of the prob-
lem have failed to give correct results. To see this recall
that the approximate Green function is,

G±(r|ω) � ω2
0

ω2
0 − ω2 − ω2

0[Σ(0|ω0) ± Σ(r|ω0)]
· (18)

For most distances Σ(r|ω0) is small. To leading order the
singularities are simple poles just off the real axis. The real
part of the singularities yields the perturbed frequencies:

ωi± � ω0 ∓ α0T
′
ii(r|ω0)
2ω0

· (19)

The corresponding lifetimes are given by the imaginary
part. Thus

2π

τi
= ω0Im[Σii(0|ω0) ± Σii(r|ω0)]

= γ(ω0) ± α0T
′′
ii(r|ω0)
ω0

· (20)

This approximate picture reveals many of the qualitative
features of the system. Notice that when the oscillators
are very close together (r → 0) the damping factor for
the antisymmetric mode goes to zero, while the factor for
the symmetric mode goes to twice that for a single oscilla-
tor. Thus an antisymmetric mode can act as a “trap” for
resonant radiation if the oscillators are very close. This is
in accordance with the dipole selection rules. To see how
close the oscillators must be for the trap to be effective we
proceed as follows. Construct a time dependent state such
that at t = 0 P (1) = P and P (2) = 0. This is a simple
linear combination of the normal modes P+ and P−:

P (1) =
P+(t) + P−(t)

2
;

P (2) =
P+(t) − P−(t)

2
· (21)

The energy now moves between the two oscillators with
a frequency α0T

′(r|ω0)/(2ω0) and mean decay frequency
γ(ω0). Efficient transfer can only occur when the corre-
sponding transfer time is much less than the natural de-
cay time. From equations (4, 19, 20) we see that this cri-
terion implies that r < 2πc/ω0. The atoms must be in the
near fields of each other. These results were first derived
by McLachlan [21] using a simple perturbation procedure
which for the time dependent resonant transfer problem
does give physically meaningful results.

However, as stated earlier, our equations can also be
be used to deduce interaction energies. Stephen [23] in-
terprets what is essentially �α0T

′
ii(r|ω0)/(2ω0) in our no-

tation as the interaction energy of two atoms in an ex-
cited configuration. A similar result follows from quantum
mechanical perturbation theory. As mentioned earlier the
expression for the potential so obtained behaves in the re-
tarded limit as r−1 cos(ω0r/c). We now turn our attention
to this problem and show how the approximations made
to arrive at such a result are too drastic.

The resonance interaction energy V (r) is given in
terms of the energies corresponding to those of the normal
modes of the complete interacting system. Besides this in-
teraction energy there will also be ground-state contribu-
tions from the modes that have not been excited. These
energy contributions vanish asymptotically and decay as
r−7 which is much faster than the resonance interaction.
We will henceforth ignore these ground-state contribu-
tions. When the system is in an excited configuration the
interaction energy becomes

V (r)i,σ = �[ωσ
i (r) − ωσ

i (∞)], (22)

where ωσ
i (r) are the poles of (17). As the first two terms

dominate the denominator of (17), G±(r|ω) only has one
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pole in each (σ, i) branch. States corresponding to these
poles are eigenstates of the coupled atoms-field system,
with the restriction made that such a state must be a lin-
ear combination of basis states where one atom is excited.
These are not quite eigenstates of the total atoms-field
system and thus have a finite lifetime in the same way as
does a single excited atom interacting with a field.

We can in a standard way [9,12,24] deform a contour
of integration around this pole to obtain a simple expres-
sion for the resonance interaction energy. The position of
the pole represents the energy of a quasi-eigenstate of the
system.

Subtracting off the energy at infinity we obtain,

�ωσ
i (r) − �ωσ

i (∞) =
�

π

∫ ∞

0

dξ ln
[
1 ∓ Σii(r|iξ)G0

1 − Σii(0|iξ)G0

]

=
�

π

∫ ∞

0

dξ ln[1 ∓ α(iξ)Tii(r|iξ)]. (23)

This is similar in structure to the expressions used in ref-
erences [7–9] to derive the ground state energy for the
system. If the modes in the (±, x) branch are excited, the
resonance interaction energy is,

V (r) =
�

π

∫ ∞

0

dξ ln[1 ∓ α(iξ)Txx(r|iξ)]. (24)

If we substitute Txx from equation (4) into this expression
for the interaction energy it can be seen that in the limit of
large separations we can expand the logarithm and retain
only the leading term. This first term is

V (r) � ∓�

π

∫ ∞

0

dξα(iξ)
e−ξr/c

r3
[1 + ξr/c + (ξr/c)2]. (25)

In the large r limit we can replace α(iξ) by its static value
α(0) and evaluate the integral to obtain,

V (r) � ∓4�cα(0)/
(
πr4

)
. (26)

This represents the dominating term in the interaction
energy for oscillators in an excited configuration at zero
temperature. When the system is trapped in an antisym-
metric state the attraction is many orders of magnitude
larger than the ground-state interaction energy. In the
limit c → ∞, the well known non-retarded form for the
resonance interaction (∝ r−3) follows immediately from
equation (25).

We now ask why the standard treatment of the prob-
lem gives rise to a long-range oscillating form for the re-
tarded interaction energy instead of the simpler result
equation (25). As we remarked earlier Stephen identified
the real part of the perturbed normal mode frequencies
with the interaction energies. Such a result follows from
equation (24) if we use the approximate Green function
equation (18) after dropping the lifetime. To leading or-
der we then obtain

V (r) � ±�α0T
′
xx(r|ω0)
π

∫ ∞

0

dξ
1

ω2
0 + ξ2

· (27)

Substituting for T ′
xx(r|ω0) from equation (4) we see that

as r → ∞, the oscillating form of V (r) ∝ r−1 cos(ω0r/c)
is obtained. This repulsive potential is usually referred to
as the Π potential. If the z-branch (Tzz) is excited the
incorrect treatment gives V (r) ∝ r−2 sin(ω0r/c). This at-
tractive potential is commonly referred to as the Σ po-
tential. Thus, the standard use of perturbation theory is
equivalent to using the simplified Green function (18) after
dropping the lifetime. Such an approximation is commonly
used in the treatment of atom-field interactions. In this
case however it clearly represents too drastic a simplifica-
tion. The correct answer is obtained in a non-perturbative
approach of the sort given above.

3 Resonance interaction at finite
temperatures

We next demonstrate that finite temperature effects can
be easily dealt with as for the corresponding ground state
problem [13,25]. In fact as for the interaction between
two ground state atoms the correct long-range interaction
can only be found when finite temperature is accounted
for [13]. To account for the temperature (T ) dependence
we simply replace the integration over imaginary frequen-
cies by a summation over discrete frequencies [24,26],

�

2π

∫ ∞

0

dξ → kBT

∞′∑
n=0

, (28)

where ξn = 2πkBTn/�, kB is the Boltzmann constant and
the prime indicates that the n = 0 term should be divided
by 2. Combining this with equation (25) we find that the
correct leading term at large separation is

V (r, T ) � ∓2kBTα(0)
r3

∞′∑
n=0

e−xn

(1 + An2)(1 + xn + x2n2)
,

(29)

where x = 2πkBTr/(�c) and A = [(2πkBT )/(�ω0)]2. We
can again replace the polarizability with α(0) at large
enough separations (or strictly speaking when x is much
larger than unity and A is sufficiently small). Within this
approximation the resonance free energy is,

V (r, T ) � ∓2kBTα(0)

× [1 + e3x − ex(1 + 2x − 2x2) + e2x(−1 + 2x + 2x2)]
2r3(ex − 1)3

·
(30)

For small values of x this free energy of interaction does
indeed have equation (26) as its leading term. Clearly,
for any finite temperature the long-range interaction is
dominated by the n = 0 term. This term is here

V (r, T )n=0 = ∓kBTα(0)/r3. (31)

This is the correct asymptotic long-range resonance inter-
action at any finite temperature. Expressed in terms of
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the classical Bohr radius (a0) and the first excited state
of a real hydrogen atom the long-ranged purely classical
result is kBTa3

0/r3. This manifestation of the correspon-
dence principle is very similar in nature to the result ob-
tained for the retarded van der Waals interaction between
two ground-state atoms [13]. It is not only the correct
result at high enough temperatures, but also at any fi-
nite temperature for large enough separations. In the limit
when A is large and x is sufficiently small the resonance
interaction energy equation (29) takes on the following
approximate form,

V (r, T ) ≈ ∓kBTα(0)
r3

[1 + π2/(3A)]. (32)

The change in power-law at large separations has usually
been interpreted as being simply due to the finite veloc-
ity of light. However, the long-range interaction at finite
temperatures between two atoms is independent of the
velocity of light. This demonstrates that there is more to
it than a simple loss of inter-correlation due to the finite
velocity of light. As pointed out by Wennerström, Daicic,
and Ninham [13] the quantum nature of light must be
important to the softening of the interaction potential.

4 The Förster energy transfer revisited

What the previous sections have demonstrated is that it
is essential to reconsider the complete reliance on per-
turbation techniques when it comes to intermolecular in-
teractions. We will as an important example discuss en-
ergy transfer between two molecules (that in general may
be different). The derivation of the Förster energy trans-
fer [16,27–30] follows closely the derivation for the reso-
nance interaction. The idea has been that the first atom
emits a photon by spontaneous emission (unaffected by
the second atom), which is subsequently adsorbed by the
second atom. The overall rate should then decay away as
the area of a spherical shell. However, we argue that this
is an unphysical assumption. When the electromagnetic
coupling of the two atoms is taken into account a totally
different result follows.

We first define what we mean by transfer rate. Fol-
lowing Förster [16] we can discuss two different regions:
the strong-coupling limit and the weakly-coupled limit.
In the strong-coupling limit one can define the rate of
“fast” transfer between two identical molecules, one in the
ground state and the other in an excited state, as [16]:

n ≈ 2|U |/(π�), (33)

where U is the resonance energy and � is Planck’s con-
stant. This is the region discussed in the previous sec-
tions. Förster demonstrated how the transfer rate of both
strongly and weakly coupled molecules can be treated
within the same formalism [16]. Between two weakly inter-
acting molecules (that in general may be different) there
is enough that there is an overlap of the energy-bands to

have energy transfer. Application of time-dependent per-
turbation theory gives the following approximation (Fermi
golden rule rate) for this “slow” transfer rate [15,16]:

n ≈ 2π|U |2δ/�, (34)

where δ is the “density of final states” (related to the
spread in the energy of the optical band associated with
slow energy transfer [16]).

In the nonretarded limit the Förster energy transfer
rate vanishes asymptotically as r−6. In the “standard ap-
proach” (using only the real part of the interaction en-
ergy obtained from perturbation theory) the averaged de-
cay rate in the retarded limit becomes proportional to
cos2(ωr/c)/r2 [28]. This oscillating form was correctly as-
sumed to be incorrect (after comparison with the “ex-
pected” r−2). When the complex interaction energy ob-
tained from perturbation theory is used the transfer rate
averaged over possible orientations was found to decay as
r−2 [27,28].

There are however no obvious physical reason why the
system should be considered as uncoupled. We argue that
it is much more realistic to consider the system of two
atoms to be coupled by the field. At large separations the
transfer rate then vanishes as r−8 (or as r−6 if thermal
effects are important).

The problem of Förster energy transfer is one of ob-
vious importance and one that deserves close and careful
examination in the near future. In the same way as the
DLVO theory of colloid interactions separates the disper-
sion (quantum mechanical) interactions from the electro-
static double layer forces and is very badly flawed and
erroneous [31,32] so too the separation of photon transfer
from electron transfer is equally flawed and misleading.
We will come back to how the problem of photon transfer
in the presence of a plasma is non analytic in the presence
of an electron density. The slightest perturbation which
introduces an infinitesimal electron density changes the
analytic form of the photon transfer completely.

5 Conclusions

In conclusion we have studied the problem of the interac-
tion of two atoms in an excited configuration. The semi-
classical approach, when applied to the time dependent
problem of energy transfer, confirms the earlier work by
McLachlan and Stephen. However, we conclude that the
generally accepted form for the retarded interaction en-
ergy between excited atoms is not correct. Brennen et al.
[33] have proposed a mechanism for creating entangled
states for quantum computing exploiting resonantly in-
duced dipole-dipole interaction. While the proposed mech-
anism offers a very interesting avenue to quantum logic,
the underlying theory presented for the dipole-dipole in-
teraction is as incorrect as all previous perturbative treat-
ments. We have formulated the energy of interaction in
terms of a steady state situation where the normal modes
of the interacting system are excited. This yields in the
limit r → ∞ an interaction energy ∝ r−4. For any finite
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temperature the long-range asymptote is kBTα(0)/r3. We
have also highlighted the need for a revised theory for the
Förster energy transfer.

It is instructive to compare numerically how our cor-
rectly evaluated resonance interaction energy differs from
previous incorrect treatments. Experiments are usually
compared with a sum of different energy contributions.
The resonance interaction is there modelled with a poten-
tial that goes as C3/r3. Retardation effects is then taken
into account by multiplying this expression with a separa-
tion dependent prefactor [6]. This approach is flawed for
two reasons. First, as we have described above it uses an
incorrect Green function. It also assumes that a small ar-
gument series expansion can be applied to the logarithmic
term. This is also invalid at the shortest distances consid-
ered in experiments. We have performed numerical model
calculations for a system consisting of two sodium atoms
with ω0 = 3.2 × 1015 rad/s and C3 = 4.018 zJnm3. At
atomic separations relevant for experiments (20–170 Bohr
radii) we found that the deviations between correctly and
incorrectly evaluated resonance interaction energies where
less than 1% (5%) for the Π potential (Σ potential). How-
ever, at larger atomic separations (and for higher values
of ω0) retardation effects become much more important.
The point of the paper is to correct a fundamental error
that effects the real nature of retardation.

We finally mention that it is straightforward to ex-
tend the formalism to obtain the correct result for the
resonance interaction in narrow channels following refer-
ence [34]. We recently exploited the zero-temperature for-
malism developed in the present paper to consider the
resonance interaction in narrow channels [35]. We demon-
strated that the long-range resonance interaction can be
enhanced in narrow channels. The interaction can also
change from long-range attraction to short-range repul-
sion giving rise to bound states where molecules can be
trapped.

This is a revised and extended form of an unpublished
manuscript written by B.W. Ninham, J. Mahanty, D.J.
Mitchell, B. Davies, and P. Richmond in 1971. M.B. would
like to thank STINT, The Swedish Foundation for Interna-
tional Cooperation in Research and Higher Education, for a
post-doctoral scholarship.
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